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ABSTRACT 

In this work, we develop models that supply chains can employ to satisfy periodic and 

stochastic demand effectively. These models combine the strategic and operational decisions 

to cost function. Strategic decisions are represented by the size of capacity acquired, while 

operational decisions are represented by the parameters of the inventory policy employed. 

In addition to combining the strategic and operational decisions, the developed models 

study three alternatives that can reduce the cost of satisfying the demand by relying on external 

production to outsource or subcontract some of the demand. Outsourcing is studied where a 

fixed amount of the product is delivered to the supply chain each time period regardless of the 

demand and inventory status. Subcontracting is employed if the inventory status reaches a 

certain level that justifies going to a third party. Collaboration is the last alternative considered 

where two supply chains cooperate to satisfy the demand they are subject to. Two models of 

collaboration are studied: in the first model, collaboration takes place by exchanging unused 

capacity while in the second model, collaboration happens by exchanging finished products. 

A simple stochastic approximation method is used to find the optimum parameters that 

minimize the cost functions considered. The costs are evaluated using simulation, while the 

gradient of the cost with respect to the different parameters is found using infinitesimal pert ur­

bation analysis ( I PA ). The validity of the suggested optimization method is checked graphically 

for models having three parameters to optimize. 

Different experiments are conducted to study the response of the supply chain to its working 

environment and parameters for both single stage supply chains and multi-echelon supply 

chains. The working environment is changed by changing the variability of the demand that 

the supply chain is trying to satisfy and by changing the cost of the units satisfied from external 
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sources. Holding cost, capacity cost and backordering cost are the supply chain parameters 

changed in these studies. 
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CHAPTER 1 INTRODUCTION 

Many topics and problems can be classified under the umbrella of supply chains. Unfor­

tunately, most problems addressed in the literature only address a small part of the overall 

structure of the supply chains such as the inventory problem, the scheduling problem, or the 

flow problem. Integrating these problems helps improve the overall structure of the supply 

chain. 

Models that integrate strategic and operational decision are highly valuable in reducing 

the operating costs of the supply chains, especially in stochastic environments. Subcontract­

ing. outsourcing, and collaboration in supply chains are relatively new concepts gaining more 

momentum in the world of supply chains. Practically, these concepts became more attractive 

after the new changes in the e-business world. Manageriallv. savings obtained by relying on 

these methods are increasingly appreciated by supply chain managers. 

1.1 Supply Chain Management 

Supply chain management, as defined by Thomas and Griffin (1). is the management of 

material and information flow both in and between facilities, such as vendors, manufacturing 

and assembly plants, and distribution centers. Inventory control, facilities locations, distri­

bution allocation, multi-commodity flow problems, and scheduling problems can be classified 

under this definition. 

Problems related to supply chains are classified according to the working environment as 

being deterministic or stochastic. In addition to this classification, researchers look at certain 

aspects and ignore the rest of the supply chain. The focus of research can be on the following: 

Components: purchasing, production, warehousing, and transportation. 
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Functions: supply, manufacturing, and distribution. 

Level of Planning: strategic, tactical, and operational. 

Objective Function: production cost, service level, and quality. 

Concentrating on one component, function, level, or objective might improve the perfor­

mance of this part of the supply chain but the overall behavior of the chain might deteriorate. 

Researchers need to have a bird's eye view of the supply chain to have a better performance 

of the overall chain. 

1.1.1 Stochastic Environments 

Supply chains usually work in stochastic environments. Price fluctuations, economy changes, 

machines reliability, and competition among other factors force the chain to work in such a 

stochastic environment. This stochastic environment causes a sharp increase in the operating 

cost of the chain. As an example, a reliability problem in a machine might prevent the supply 

chain from satisfying the conditions of a contractor to deliver a specified amount of the product 

at a certain time, which means some penalty costs. 

Similarly, satisfying a random demand might suggest keeping large amounts of inventory, 

large capacity, or subcontracting part of the demand from the market. Costs due to holding a 

large pile of inventory, not fully using expensive equipment or paying high prices to subcontract 

some of the demand, would result from the suggestion presented above. Having these alterna­

tives. supply chain managers must decide how much inventory to keep, how much capacity to 

maintain, and when to rely on the external market. 

1.1.2 Hierarchal Design Problem 

Decisions concerning the amount of capacity to buy are usually isolated from the operational 

behavior of any chain. This fact is due to the hierarchical nature of the decision-making process 

in the supply chains, where decisions can be classified as strategic, tactical, or operational. 

Opening a new production facility or acquiring new equipment is considered a part of the 
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strategic and tactical decisions, while deciding the production policy within the facility - as 

make to order or make to stock - and inventory policies to apply are considered as operational 

decisions. 

Capacity can be thought of as the production power of a factory. This power can be 

represented through the number of production lines, machines, and labor available. Costs 

associated with these capacities are represented by the initial capital cost needed to acquire 

this capacity and its operational costs or the penalty need to be paid for not fully utilizing 

this capacity. As noted by (2). two common concepts in industry are: low unit costs are best 

achieved by fully utilizing the production equipment, and a simpler concept is that capacity is 

'expensive'. 

A trade-off appears between the alternatives of keeping a large capacity or keeping a large 

inventory to respond to a stochastic demand. Nevertheless, not much work has been done 

to decide what is the proper capacity to keep and what inventory parameters must be used 

simultaneously.These will be the main focus of this work. 

1.2 New Concepts 

Satisfying the demand can be done through in-house production or external production. 

Each method has its own benefits and disadvantages. Balancing both types of production 

may mean tremendous savings to the supply chain. External production is acquired through 

subcontracting or outsourcing part of the production. Subcontracting is defined as relying on 

the external production when needed, while outsourcing means getting a fixed amount of the 

product each period. 

This work also studies collaboration in supply chains. Collaboration in this work is meant 

to be parallel collaboration, where two supply chains collaborate along the same echelon of the 

supply chain. Supply chains can collaborate by exchanging finished goods or unused capacities 

Two models of collaboration are suggested to capture both situations. 
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1.2.1 Subcontracting and Outsourcing 

The new e-commerce developments partially helped subcontracting and outsourcing prac­

tices gain more importance in the operation of supply chains (3). Different definitions for 

outsourcing and subcontracting are found in the literature, but in this work subcontracting 

refers to purchasing the needed amount of the product at severe demand conditions. It is 

assumed in this work that the price of the subcontracted product is always fixed and deter­

mined bv the market and there is an upper limit on the amount of the product available in 

the market. Outsourcing refers to relying on an external supplier to deliver a fixed amount of 

the product each period, regardless of the demand and inventory status. 

It is clear from the definitions above that outsourcing lacks the flexibility that subcon­

tracting has but the incentive is lower price. These decisions cannot be classified as strategic 

decisions or as operational decisions since they fall in the gray area between them. 

The dynamics of subcontracting is modeled in this work through a triggering level such that 

if the inventory gets less than this level, then the chain would rely on the external production. 

The model tries to find the optimum triggering level at which the supply chain needs to 

subcontract. The models employing outsourcing try to find the optimum fixed amount to get 

each period, which is insensitive to the state of the supply chain. 

1.2.2 Collaboration 

Supply chains might cooperate in satisfying situations when one chain is subject to severe 

demand conditions. Such a collaboration can be between supply chains producing the same 

product but serving different geographical areas or different type of customers. Also, collabo­

ration can occur between supply chains that can use their own production powers to produce 

different set of products. Collaboration of this type can help the supply chains satisfy their 

demand with the lowest possible cost. 

Two methods are considered for collaboration. In the first method, collaboration occurs 

through the exchange of the unused capacity of one of the chains to the other. The other 

approach of collaboration is through exchanging finished products between the supply chains. 



www.manaraa.com

5 

For both methods, the supply chain subject to high demand tries to buy capacity or finished 

products to get its inventory to certain levels. The supply chain with excess capacity or 

inventory tries to sell all of its unused capacity in case of exchanging capacity or sell products 

till a defined limit. Through the models capturing collaboration, the optimum collaboration 

triggering levels that minimize the cost of the supply chain are found. 

1.3 Optimization Methodology 

Different operating and cost models are developed in this work. All of these models work in 

a stochastic environment where no easy-to-use formula exists to evaluate the cost of operating 

the supply chain. Simulation is needed to evaluate these costs. 

Simulation optimization problems are developed for all of the models considered in this 

work. Using a simple stochastic approximation, the chain decision variables are updated, 

where the gradients implemented are found using infinitesimal perturbation analysis (IPA). 

This method calculates the gradient while running the simulation by perturbing the decision 

variables by an amount, S. where S —> 0 and calculates the changes in the cost function due to 

these perturbations in the sample path. 

The decision variables considered are the inventory triggering levels for in the house pro­

duction and subcontracting, capacity maintained, amounts to outsource, and the effective 

collaboration parameters to use. 

1.4 New Contributions 

The managerial contributions introduced through this work are as follow 

1— integrating strategic and operational decisions in one model for the supply chains. 

2— finding the optimum balance between in house production and external production and 

3— introducing new collaboration models that can be implemented by supply chains. 

Within the simulation optimization framework, it is shown in this work that 
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1- IRA can he used to find unbiased gradients for the supply chain cost function with respect 

to all the decision variables and models presented in this work and 

2 -  implementing these gradients within an appropriate stochastic approximation algorithm 

would find the optimum decision variables to operate the supply chain. 

1.5 Organization 

The thesis is organized as follows: Chapter 2 discusses the literature related to this topic. 

Chapter 3 presents the model where outsourcing is used and Chapter 4 looks into subcon­

tracting. Chapter 5 shows how collaboration can be implemented between supply chains, and 

finally. Chapter 6 presents the general conclusions and future avenues for research. 
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CHAPTER 2 LITERATURE REVIEW 

The main two subjects drawn upon in this thesis are simulation optimization and supply 

chain design within a stochastic environment. For this reason, the literature review is divided 

into the following sections: section 1 discusses the literature related to simulation optimization. 

Section 2 shows the work related to supply chain design, while section 3 discusses the most 

related literature to the subject of this work. 

2.1 Simulation Optimization and IPA 

Mathematical models are built to capture the basic dynamics and constraints of systems 

under study. Questions of interest regarding these models can be captured through analytical 

or simulation models. Analytical models are used for simple systems but these models fail 

for complicated systems and simulation would be to model these systems. Simulation runs 

are used to capture the transient and steady-state behavior of systems working in stochastic 

environments. 

Using these simulation runs to optimize such systems is done through simulation opti­

mization. Different input parameters result in different outputs and are required to find the 

optimum set of these input parameters by extracting information out of the simulation runs 

of the system. Swisher et al. (4) describe the general model to be optimized as consisting of 

p input parameters defined over a feasible region and r/ stochastic output 

variables )' = (}•"[. Y2, :.... V'q). where the output variables are functions of the input parame­

ters. The function C(V') combines the output variables into this function where the expected 

value /-"(W) = E[C(needs to be optimized by determining the optimum values of the 

input parameters. 
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These input parameters can be either discrete or continuous. If the input parameters 

belong to a small set, then ranking and selection techniques such as the two-stage Rinnot (5) 

procedure can be used or the multiple comparison procedures (MOP) (6). Comparing the 

expected output values of k systems with unknown variance is done in the Rinnot two-stage 

system by simulating these systems for a number of times in the first stage, then selecting the 

required number of samples in the second stage to be within certain limits of making the correct 

choice. The MC'B methods compare the systems with the best system and keeps eliminating 

systems that are not within a certain interval from the best. Other methods can be used for 

the discrete decision variables with a small set of feasible systems. 

For large sets of input parameters, ordinal optimization procedures can be used where the 

set size is reduced and the search is performed within a small set (7) . General search strategies 

such as simulated annealing (8), genetic algorithms (9). and tabu search (10) can be used for 

large sets along with other new innovative ideas such as the nested partition method of Shi 

and Olafsson (11) that combines partitioning, random sampling, selecting a promising index 

and backtracking to create a Markov chain that converges to the global optimum. 

The input parameters discussed in this work are continuous and different approaches are 

used to optimize these models. Two main approaches can be identified in the literature; non-

gradient approaches and gradient based approaches. The Ned 1er-Mead (12) (simplex) method 

is one of the most common non-gradient based approaches used. It is an iterative procedure 

where /> extreme points are chosen. This set of extreme points is admitted to change towards 

the best solution based on certain reflection procedures they describe. 

The other approach is to use gradient-based approaches such as the method employed in 

this work. The gradient of the objective function is estimated and then implemented within a 

stochastic approximation SA algorithm. SA algorithms are designed originally to find the root 

of functions that cannot be found analytically. Using Vf within these SA algorithms helps in 

finding the optimum minimum or maximum of the function /. For function /. Roobins and 

Monro ( 13) try to find the 9 Ç Rd such that f(0) = 0, while Kiefer and Wolfowitz (14) use a 

finite difference method to find V/= 0 where 6 G Rd. 
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Different scaling and projection algorithms are proposed by andradottir (15) (16) to either 

guarantee the convergence of the method to the optimum value or accelerate the process of 

convergence. Estimating the gradients is done through different techniques (15)and (16). 

The techniques most used are infinite perturbation analysis (IPA) and likelihood ratio (LR) 

(17). The I PA method uses the sample path derivative, while LR differentiates the underlying 

probability measures. The IPA method is similar to the finite difference approaches but the 

derivatives of IPA are not a function of the 6 differences in the finite difference method. A 

different concept is employed in the LR method where the probability of having a different or 

perturbed sample path using the same set of random variables is measured (18). 

Finding the gradient of a performance measure using IPA is not always a valid method. 

Applying IPA for a discrete event dynamic system (DEDS) requires that the order of events 

does not change and if it changes, then certain conditions need to be satisfied. Additionally, 

discontinuities of the performance measure function with respect to the decision variables will 

result in biased estimates for the gradient (18) and (19). 

To overcome these problems, new extensions to IPA were suggested. Finite perturbation 

analysis ( F PA ) is a method that allows order change and uses a sample path construction 

method to get the gradients (20). Smooth perturbation analysis (SPA) estimates the gradient 

of the performance measure by conditioning on the probability of having a discontinuity and 

the expected change in the performance measure due to this discontinuity (21). IPA, F PA. 

and SPA are the most used techniques to estimate the gradients for different applications. 

Alternative representations of the DEDS might be helpful in changing a system that does not 

comply with the IPA conditions to one that complies with it (22). 

Within the framework of SPA. different techniques are suggested to find the conditional 

expectations and the expected changes in the performance measure function. Structural IPA 

or SI PA deals with the routing parameters in a Generalized semi-Markov process (GSMP) (23). 

Discontinuous perturbation analysis (DPA) uses (Dirac-delta) functions to model discontinu­

ities in the sample performance functions (2-1). Other conditioning techniques are found in Fu 

and llu (25). 
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2.2 Supply Chain Design 

Supply chain management is defined as the integration of the key business processes from 

the end user through the original supplier that provides products, services and information 

that add value for customers and other stockholders (*26). Different topics can be related to 

the definition above and some of these topics, according to Stock and Lambert (26). include: 

1. Customer relationship management. 

2. Customer service management. 

3. Demand management. 

4. Order fulfillment. 

5. Manufacturing flow management. 

6. Procurement. 

7. Product development and commercialization. 

8. Returns. 

Mathematical models developed to capture the operation of supply chains are either deter­

ministic models or stochastic models. The models developed in this work are stochastic models 

and simulation is used to capture the randomness in these models. 

Ingalls (27) mentions different business scenarios where simulation is needed to model and 

optimize the behavior of supply chains. One such scenario is when the variance affects the 

costs to the chain as the models considered in this work. To respond to the demand variance, 

the chain might keep a large amount of unused inventory, thus incurring extra cost. Models 

that are too complicated to optimize require the use of simulation. The allocation mechanism 

for a distribution center and its satellite retailers subject to stochastic demand is one such 

scenario. Simulation would also offer different solutions to different problems at the same 

time. The allocation mechanism studied above can show near optimal policies to minimize 

cost, increased service levels, or completely filling the demand of certain customers. 
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2.3 Related Work 

The previous sections discussed the general work related to supply chains and simulation 

optimization. Works most related to the subject presented here can be classified into two 

subjects. The first subject discusses work that attempted to combine strategic and operational 

decisions in one framework. The second subject shows the attempts to optimize supply chains 

or inventory problems working in stochastic environments using IPA. 

2.3.1 Strategic and Operational Decisions 

Coordinating multi-plants within the supply chains can be of two types (28). The first 

type is called "general coordination" and addresses the problem of integrating decisions of 

different activities such as facility location, production, and distribution. The second type 

links decisions within the same activity for the different levels in the firm: this level is called 

multi-plant coordination. This work combines both types of coordination, since more than one 

facility might be involved and within the same facility strategic and operational decisions are 

considered at the same time. 

As discussed in the introduction, strategic decisions are usually isolated from operational 

decisions, due to the usual managerial practices of isolating both decisions. Decisions regarding 

the amounts of capacity to keep are usually isolated from decisions regarding the control 

parameters that initiate production and how much inventory to keep. 

An attempt to combine both types of decisions is that of Bradley and Artzen (2), where 

they developed a comprehensive model that maximized return on investment for supply chains 

subject to seasonal demand. This model decided the optimum inventory and capacity levels 

to use. and gave the best schedule to manage production. 

L sing different environment settings. Bradley and Glynn (29) tried to choose the best 

capacity and inventory settings in a facility subject to stochastic demand both for periodic 

and continuous time horizons where the cost of holding and inventory are small compared to 

the cost of capacity. The problem was modeled using the Brownian approximation. Bradley 

(30) extended the previous model to include subcontracting decisions and also a Brownian 
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motion model with a double drift is used. 

In this work, two models of capacity are used and added to the usual operational costs 

of holding and backordering costs. The first model takes into account the cost of unused 

capacity, while the other uses a polynomial function for the cost of capacity with respect to its 

size regardless of its usage. In addition to having these new models for cost, subcontracting 

and outsourcing decisions are also combined with the strategic and operational decisions. 

The majority of the research related to collaboration in supply chains addresses the prob­

lems discussed by H au Lee (31). The researches only looked at the vertical coordination 

between the vertical echelons of the same supply chains. This coordination could take many 

forms, the most widely used form is coordination through information sharing (32). This work 

presented a new form for collaboration not addressed in the literature, horizontal collaboration 

between two different supply chains by sharing there capacities and products. 

2.3.2 IPA and Supply Chain Optimization 

A number of stochastic models consider base-stock inventory control policies with fixed 

capacity. These models do not consider the production capacity as a decision variable, but 

rather the only decision variable to consider is the base stock levels. Clark and Scarf's (33)work 

was the first attempt to model a serial production system, using base-stock levels to control 

the production. 

Cilaserman and Tayur (34) extended Clark and Scarf's model, where the capacity was 

limited and used IPA to optimize capacitated multi-echelon models. The necessary stabil­

ity conditions for their model was studied by Glaserman and Tayur (35). while Glasserman 

(36) developed an approximation algorithm to optimize the model without the need to run 

simulation models. 

Alan et al. (37) optimized the production supply chain of Caterpillar, where a revenue 

objective function is optimized and multiple routes for the products are considered. The 

problem is decomposed into a shortest path network flow problem and the inventory problem 

is solved using IPA. since the demand is stochastic. 
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Bis bo and Tauyr (38) used IPA to decide the optimal control policy for multi-entrant 

flow lines. In their setting, k products are produced through a line consisting of M machines. 

These products might need more than one production cycle before leaving the lines as a finished 

product. Using different sharing policies, optimum triggering production levels are introduced 

through their settings. 

The use of IPA in this work is extended toward the strategic parameters that control 

the supply chain. Optimum subcontracting, outsourcing, and collaboration parameters are 

optimized using IPA. The un biased ness of the cost gradients with respect to these decision 

variables is proven in this work. 
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CHAPTER 3 MODELING STRATEGIC AND OUTSOURCING COSTS 

AS POLYNOMIAL FUNCTIONS 

This chapter and the following chapter present discrete event system models that can be 

used to jointly optimize the strategic and the operational decisions in supply chains. This 

chapter models simple supply chains that have one warehouse, one manufacturing facility, 

and one source for external supply. Thus, the chain consists of three entities, as well as the 

customers. 

For the model discussed in this chapter, order arrivals is satisfied from the inventory and 

will trigger in-house production. This chapter considers polynomial functions for the capacity 

maintained and the amount of products outsourced. 

3.1 Supply Chain Dynamics 

Before discussing the details of the dynamics of the model, the notation is established as: 

/( .  inventory available at  the beginning of period t .  

LlH- lead time of in house production. 

D(. demand in period t .  

S.  base stock level for in house manufacturing. 

P(, amount produced in period t .  

OS, amount outsourced. 

Cp r o i{ .  production capacity available. 
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h, holding cost. 

6, back order cost. 

«prod, proportionality constant for capacity. 

bprod• rate of decrease of the capacity cost with respect to the capacity maintained. 

aos. proportionality constant for outsourcing. 

b o s .  rate of decrease of outsourcing cost with respect to outsourced quantity. 

With this notation in hand, the dynamics of the chain can be described as follow for a generic 

t ime per iod  t :  

Step 1. Products coming from both the in-house production and those outsourced are ad­

vanced one period. 

Step 2. The current demand, D t ,  is revealed and satisfied from inventory /,. Thus, the 

inventory is advanced according to 

Step 3. Production is triggered to bring the inventory to level S. unless it is not limited by the 

production capacity, Cprod, in which case the produced amount is Cprod- Thus, amounts 

produced is given by 

As an example of the dynamics of the supply chain, the operation of the first five periods of a 

supply chain having base stock level. S = 130. production capacity. C'prù,{ = 150.0. lead time 

for in-house production. Lm = 2.0. and outsourcing amount. OS = 5.0 is demonstrated in 

Figure (3.1). 

For this example, the observed demands are 67. 5. 70. 128. and 27, while the produced 

amounts are 62. 0. 65 . 123, and 22. The difference of 5 units between the demand and the 

amount produced is compensated for by the outsourced amount. 

h+\ — h + Pt-L,„ + OS — D t .  (3.1) 

P(  = min < Cprod, S + D t  -  I t  -  max 
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Figure 3.1 The operation of a supply chain with 5 = 130, Cp r od = 150.0. 
Liu = 2.0, and OS = 5.0 

3.2 Supply Chain Cost Model 

The cost functions minimized consist of costs associated with the production capacity, costs 

related to the operational behavior of the chain, and the cost of outsourcing. 

Following Hopp and Spearman (39). it is shown that the cost of capacity is given by 

cost — n Z 'bprod 
capacity — p r ù < j  • (3.3) 

where bp r o , i  is a constant between .6 and I that determines the shape of the cost function 

and apro,i is a scaling constant. Thus, it is assumed that the per unit cost of capacity is non-

increasing in the amount of capacity. The average operational costs consist of the holding cost 
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max{0. Z t} • h and the back ordering costs max{0. -/,} 6. that is, 

cost0pS  = max{0. /<} • h + max{0. -/,} - b. (3.4) 

The outsourcing cost is a function of the quantity outsourced and is similar to the capacity 

function. It is assumed to be a decreasing function with the quantity according to 

costo u t  = a0 ,OSb r". (3.5) 

Taking the three cost components, capacity, operation, and outsourcing, the total cost 

function considered in this chapter is as follow: 

Cost t  = aProdCb
p

r
r \+ max(0. I t)h + max(0. -f t)b + ao sOSb°' .  (3.6) 

The decision variables that can be varied to minimize the cost are the base stock level (5). 

the fixed outsourcing amount (OS), and the production capacity (C'proj). Thus, the decision 

vector is defined as 

0 = (S.OS.C'prod)• 

For the finite time horizon case, the following optimization problem is solved: 

I X 
„ .rain Cost f i n  = + max{0. /,} /z + max{0. -/,} • 6 + n,sO.S"> " ). (3.7) 
8— (i.OS.C p r r jd) - '  (_q 

Similarly, for the infinite time horizon, the following problem is solved: 

1 ,v 

^'os,»n/ = J im. T7 YL(aProdCbpVrod + max{0. /(} • h -(- max{0. -/,} -b + a., sOSh '").  
o — {S.Ob,C prod) —*'X/ iV 

(:*.*) 

In both cases the optimization problem is constrained by the model dynamics described by 

Equations (3.1)-(3.2) above. This is a stochastic optimization problem, since the demand 

is random. The technique used here to optimize the model is based on a simple stochastic 

approximation algorithm. Stochastic approximation algorithms move in the direction of the 

gradient, that is steepest decent, and thus it is needed to find the direction of the descent, 

found here using the IPA approach. 

Infinitesimal Perturbation Analysis (IPA) is a method that can be used to estimate deriva­

tives of the performance function with respect to any decision variable at the same time as 
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the performance is being simulated. Thus, the computational overhead is relatively low. The 

IPA derivatives of the cost function with respect to stock levels, the production capacity, and 

the amount outsourced are shown in Appendix A. To use IPA it must be shown that the IPA 

estimate of the derivatives is unbiased, addressed in Section 4 below. 

Given the IPA estimate of the gradient, the following stochastic approximation algorithm 

is used to optimize the model: 

Stochastic Approximation Algorithm 

Step 1. Start with an initial vector. 

0(o) = (S<0).OS<°>,C<"^), (3.9) 

for the decision variables and set k = 0. 

Step 2. Choose a descent direction, 

d (k) = (dtiW.rhikj.dsik)),  (3.10) 

using IPA. 

Step 3. Using a step size of o,-(Ar), update the value of the decision variables. 

0(M-i) = (3.11) 

S<k + l> = Sw  + a l(k)-d1(k) (3.12) 

OS( t+l> = OS t k )  + a2(k) • d2(k) (3.13) 

C^''=C'g + m,(t).4(t). 

Step 4. If the stopping criterion is not satisfied go to step 2 and otherwise stop. 

For the numerical examples presented in this chapter, a step size of 1.0 is chosen to update 

the value of the base-stock level (5).  The step sizes used to update the values of OS and C' c a p  

are chosen according to the Projected Stochastic Approximation (PSA) algorithm proposed by 
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Andradôttir ( 15). As a stopping criterion, the algorithm stops if for 20 updates of the decision 

parameters the cost function stays within 0.5% of the previous cost, that is. the algorithm 

stops at iteration k. if 

Finding the derivatives of the cost function with respect to all the decision variables mentioned 

above requires differentiating the equations representing the dynamics of the supply chain 

with respect to all the decision variables. These equations (3.1)-(3.2) are differentiated with 

respect to the base-stock levels, production capacity, and the amount outsourced. This set of 

derivatives are shown in Appendix A along with the cost functions derivatives, and in the next 

section it is established that they provide unbiased estimates. 

3.3 Unbiasedness of the Estimators 

For notational convenience, the three design variables are denoted as 9 = (S. CPROD• 05) and 

note that the sample path LJ(9,tv) for time T consists of three components (Ij(9.^j), Pt(9.ui). 

OS t (& .u ; ) ) .  The  s tocha s t i c  app rox ima t ion  a lgo r i t hm requ i r e s  u s in g  t he  g r ad i en t  d E [ L T( B <-") ]  

with the expectation that this function determine the search direction. While running the 

simulation study. is calculated instead (see Appendix A for the relevant equations). 

This, on the other hand, is only a satisfactory estimate if it is unbiased, that is. if 

Writing Equation (3.9) in terms of the individual 9 components, what is required is the following 

Equations (3.17)-(3.19) hold: 

(3.15) 

(IE[LT{9.*;)\  _ ^(ILrid.w1)  

d9 1  de 
(3.16) 

dE[Lx(9,u;)]  r  ̂ dLj(O.uj) 
m — £• 7~. 

dS dS 
(3.17) 

dE[LT(9,^')]  _ g dLj{9.u;) 

d d  p r o d  d d  p r o d  

(3.18) 

and 

dE[Lr(9,^)] _ p 'dLr{6.j j)  

dOS L dO S 
(3.19) 
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In this section. Equations (3.10)-(3.12) are shown to be valid, given the supply chain satisfies 

the following assumptions: 

Assumption 1 In each period, the demand is independent of demand in other periods,  the 

demand distribution is identical in each period, and is f inite in expectation. In other words.  

E[D]  < oc and the process {Dn}^L[ is  i id.  

Assumption 2 The back order cost  is  higher than the holding cost ,  that is  b > h. 

Assumption 3 The expected demand exceeds the outsourced amount,  that is  E[D\ > OS. 

Assumption 4 Production capacity exceeds the difference between the expected demand and 

what is  outsourced, that is  E[D] — OS < Cp rod-

Assumption lis a technical assumption, while Assumption 2 stems from the fact that the 

chain needs to keep a positive inventory, that is S > 0. so it will prefer satisfying the demand 

instantly rather than back ordering. Assumptions 3 and 4 guarantee that the inventory will 

neither become oc nor -oc. respectively. 

To show the un biased ness of the estimators, the following two propositions are based on 

results from Glasserman and Tayur (34) and Glasserman and Tayur (35) will be helpful. 

Proposition 1 The state variables /«.  P t .  and OS are differentiate with respect to S.  OS 

and C'prod for t  = 1,2 Moreover,  if  I t .  P t .  OS hare finite expectations and are Lipschit:  

functions with respect to all  the decision variables such that the Lipschitz modulus.  l \0 .  satisfies 

£7[A"0]  < oc then. E[Lj(9)]'  exists and is equal to E[Lr'(9)] 

Proof: The proof of Proposition 3.1(i) in Glasserman and Tayur (34) can be extended to 

the other decision variables considered in this chapter to show the differentiability of the 

state variables with respect to S, OS and C'pro,i. The extension is straightforward and is 

therefore omitted. The second part of the proposition follows from the definition of a Lipschitz 

function and the dominated convergence theorem. The details are presented in Lemma 3.2 of 

Glasserman and Tayur (34) and will not be repeated here. 
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Proposition 2 If Assumptions 1 through 4 are satisfied,  then the inventory levels return to S 

infinitely often with probabili ty one. 

Proof: Similar to the proof of Theorem 3 and Corollary 2 of Glasserman and Tayur (34). 

As described in Section 3.1 above, the amount produced by the production facility is to 

bring the inventory to S, but if Cpro<i is less than this amount then the produced amount will 

be Cprod• Production to get the inventory to S will be denoted as Type I production, while 

Type II production denotes producing an amount equal to Cp r od-

Relying on Proposition I. it is sufficient to show that I t ,  P t ,  and OS t  are Lipschitz functions 

with respect to S. OS, and Cprod and their modulus are finite. 

3.3.1 Unbiasedness of the Estimators with Respect to Triggering Levels 

First note that only the inventory, /r, is affected by a S perturbation in the in-house 

triggering level. Neither the amount outsourced nor the amount produced will be affected. 

Thus, we obtain the following theorem where the primary concerns are the inventory levels. 

Theorem 1 The functions / , .  P t ,  and OS t  are Lipschitz function with respect to S having 

modulus of 1.0.  0.  0,  respectively.  

Proof: For a fixed sample path and starting with initial conditions j§- = 1.0. ^ = 0 and 

= 0. it can be easily seen that = 0 for all time periods, since it is an independent 

variable. For periods where the production is of Type I the derivative of ^ = 0 and = 

— 1.0. For periods where the chain produces according to Type II. the amount produced 

is 5 — /(_i. A 6 increase in S will be cancel by = 1.0 from the previous period. Taking 

all possible production scenarios that might take place between / = 0 and t = V. we have 

Is =  l is  =  1-0 a r |d Is" =  Is =  0-

3.3.2 Unbiasedness of the Estimators with Respect to Production Capacity 

For a small change. 6. in the production capacity, this change perturbs the sample path if 

and only if the amount produced was limited by the production capacity. If the production 
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capacity was greater than the amount produced, then this increase will not affect the sample 

path of the chain. This perturbation will propagate to the inventory level and will terminate 

in a given period only if the produced amount in this period was to get the inventory to the 

base-stock level and not limited by production capacity available. 

Figure (3.2) shows typical nominal and perturbed sample paths for a supply chain having 

a production power of 150 item/period with 2-unit time lead time, outsourcers 5 items/period, 

the base-stock level is S = 130. and subject to demand exponentially distributed demand with 

an average of 100 items/period. Figure (3.2) demonstrates the effects of a small perturbation 

in the production power. In this figure, the dashed (- -) sample path is the perturbed one, 

while the solid line (-) represents the nominal sample path. 
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Figure 3.2 Perturbation due to production capacity (Cprù,/) 

In period 13. production is of Type II. For a small perturbation. S. that is. where the 

perturbed production capacity is C" d = Cpro,i + 6. the produced amount in the perturbed 
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sample path would increase by an amount S. This perturbation is propagated to the inventory 

on next period. For the next 4 periods the produced amount is of Type II. So. for all these 

periods the produced amount along the perturbed sample path is greater than the nominal 

one by S. In period 48 the produced amount is to return the inventory to S so not all of its 

production power is used and the perturbed sample path shows a 6 increase in production, 

since it needs to compensate for the lower level in inventory in the nominal path. This example 

establishes the intuition behind the following theorem. 

Theorem 2 The functionc- f t .  .  and OSt are Lipschit:  function with respect to C'p r o , {  having 

modulus Kj, Kp, and Kos- respectively, such that E[Ki] < oc, E[l\'p] < oc and £"[/\'os] = 0. 

Proof: For a fixed sample path, this sample path can be divided into alternating segments of 

Type I and Type II production. Assuming there are R segments of production according to 

Type II. it is helpful to assume that 6, and e, represent the first period and the last period of 

segment i € R where the production is of type II. 

For any change S in Cp r od to Cp r od + S. the chain's dynamics will cause 

S~ l \P t{CProd + <>") - Pt(Cprod)\ = 0.0 for e, < t  < 6,+1 and i  = 1.2. . . .R. (3.20) 

S~x \P t{Cp r od + $) -  Pt(C'p r od)\  = 1.0 for b t  < t < e, and i  — 1.2. . . .R. (3.21) 

and 

S~ l \P t { C p r o d  +  A") - (C'prod) I = b t  - e, for t  = e t  and i  = 1.2. . . .R. (3.22) 

For the inventory level, these derivatives are 

|/((Cpru,/ + Ô) - l t(C'p r od)\  = 0.0 for e, <t < 6,+1 and i  = 1.2..../?. (3.23) 

d"-I |P((C'p r ûd + d") -  P t(Cp r ûd)\  = t -  b, for b t  < t < e, and / = 1.2..../?. (3.24) 

and 

<S-1 \Pt(Cp r od + <$) -  Pt{Cp r od)\  '  e, - bi for t  -  t ,  and i  = 1.2..../?. (3.25) 
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From Equations (3.20)-(3.25) it is seen that the maximum modulus is obtained for cases rep­

resented by Equations (??) and (3.25). Defining 

RM AX = max{e, — 6,} for i  = 1.2 R. 

and then using Proposition 2. it follows that P(RMAX < oc) = 1 and thus £"[A*/] < oc and 

E[I\p] < oc. 

3.3.3 Unbiasedness of the Estimators with Respect to Outsourcing 

Finally, the following theorem establishes that the sample path functions are Lipschitz with 

respect the outsourcing amount. 

Theorem 3 The functions I t .  P t .  and OS t  are Lipschitz function with respect to OS having 

modulus [\[. I\'p. and I\os- respectively such that E[I\j] < oc. E[I\p\ < oc and EjVv'os] = 1.0. 

Proof: As demonstrated in Figure (3.3) and for a fixed sample path, the chain is sensitive to 

the outsourced amount only in situations where the produced amount fails to satisfy the needs 

of the chain. Any generated perturbation is eliminated once the produced amount is sufficient 

to bring the inventory to base stock level. A similar argument to the one shown above for the 

unbiasedness with respect to Cp r o j  is  needed to show the unbiasedness with respect to OS. 

3.3.4 Unbiasedness of the Cost Functions 

Having established the required results for its primary components, the following theorem 

for the cost function can now be stated. 

Theorem 4 The function Cost / is  Lipschitz function with respect to S.  Cp r od- OS having mod­

ules b,  RMAXb + aprodbprudCpr',^ '  and RM AXb + ao sbo sOSb ,"~ l  with respect to S.  Cp r u , {  

and OS respectively.  

Proof: This follows directly from Theorems 1. 2 and 3. After substituting with the shown 

modulus in the cost function derivatives, the modulus above are obtained. 

Theorem 5 ff  Assumptions I and 4 above are satisfied,  thfn .V-1 £!n=i ^4(6)''  • 
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Figure 3.3 Perturbation due to amount outsourced (OS) 
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Proof: Theorem 4.7 and Lemma B.l of Glasserman and Tayur (34) can be extended using the 

modulus from Theorem 4 above. 

3.4 Validation and Numerical Examples 

Different experiments are presented in this section. In the first set of experiments, the 

overall feasibility of the approach is evaluated by considering if the stochastic approximation 

algorithm is likely to converge for the model. After establishing this feasibility, the trade-off 

between outsourcing and in-house production is considered as a function of parameters such 

as holding cost, outsourcing cost, and demand variance. 

For all of the examples, the following settings are used for the stochastic approximation 

algorithm. The starting points are chosen as a function of the expected demand such that 

S = '2.QE[D\,OS — 0.5£"[D] and Cprod = 1.5£"[D]. The derivatives are estimated by simulating 

the model for 50,000 periods and the final cost presented is the average of 30 runs each of 

100,000 periods at the optimum decision variables presented. The parameters chosen for the 

PSA are such that after 100 steps the width of the projected area for outsourcing reaches 

0.5E[D] and that of the capacity reaches 1.0£"[D]. 

3.4.1 Model Validation 

For the framework presented in this chapter to be feasible, it is necessary to establish 

that high quality solutions are obtained and that the shape of the response (cost) function 

is such that a stochastic approximation algorithm is likely to converge. Ideally, this could be 

done by proving convexity of the cost function, but in the absence of such proof a graphical 

representation of the cost will be used as motivation. 

Consider a simple supply chain subject to a stationary demand that is exponentially dis­

tributed with the mean of 100. The holding cost is 30 and the back order cost is 100. The 

capacity function is 700C°;^( /  with a lead time of 2 units and the outsourcing cost function 

is 4000S'°b. Managers facing this cost structure might be tempted to rely on outsourcing, 

since the per item production cost is lower than for in-house manufacturing. However, using 
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the joint model, the best cost for the chain is found to be 239*24 ("24) with the best decision 

variables set at S = 188, OS = 69, and Cprod = 83. The number within parenthesis is the 

standard deviation calculated for 30 runs. The intuitive reason for having relatively a high 

capacity, even though the per unit in-house production cost exceeds the per unit outsourcing 

cost, is that the cost of holding and the lack to responsiveness to a stochastic environment 

when everything is outsourced creates a hidden cost captured in the present model. 

The quality of the solution obtained is checked by a graphical means. Since there are three 

decision variables considered, it is necessary to illustrate the cost function with respect to the 

two decision variables at a time. For this purpose, two decision variables are varied at a time, 

while keeping the third at the value obtained by solving the model above. Figures (3.4)-(3.6) 

shows the cost functions for S = 188, Cprod = 88 and Z = 69, respectively, while the other 

decision variables are allowed to vary. 

Cost 

Optimum value of 
OS and capacity x 10* 

3.5. 

100 

100 
150 80 Capacity 

200 

OS 
250 o 

Figure 3.4 Cost versus Cp r ùd and OS 

The solution found using the stochastic approximation algorithm is identified in each of 

Figures (3.4)-(3.6) with an arrow. It is clear, these points represent high quality .solutions if 

only two variables are considered at a time. Also note, although the convexity of the cost 
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function has not been established, the shape of the cost function is such that using a steepest 

decent algorithm from an arbitrary starting point can be expected to yield positive results. 

Thus, the feasibility of the present approach becomes plausible. 

3.4.2 Evaluation of Joint Operational and Strategic Decisions 

In this section the trade-off between outsourcing and in-house production is evaluated 

through the response of the model to changes in model parameters. The aim of this section is 

to obtain managerial insights into how such decisions should be made. The first experiment 

considers the effect of varying the holding cost relative to the backorder cost, while effects of 

outsourcing cost and demand variability are addressed later. 

Operational costs are dominated by the holding cost and backorder cost and it is thus of 

interest to investigate how the proportion of holding cost to backorder cost effects the decision 

making process. As before, we assume that the backorder cost is higher than the holding cost 

(b > h), and we fix the backorder cost as b = 100 and let the holding cost vary as h £ [10.90]. 

The total cost of the best parameter setting found using the stochastic approximation algorithm 

is shown in Figure (3.7) as a function of the holding cost. 

Figure (3.7) shows the cost reduction due to outsourcing is small when the holding cost is 

low, and increases with an increased holding cost. Intuitively, this is due to the fact that for 

the two-unit lead time, the manufacturer must pay the holding penalty once during processing 

and then each time the unit stays in stock without being sold. This can be seen as a hidden 

save in cost for outsourcing, since the holding cost will be paid for items staying in stock only. 

As the holding cost increases and at the mean time outsourcing is a valid option to be 

considered, the supply chain has a chance to decrease its base stock level more than the 

case without outsourcing. This is illustrated in Figure (3.8). which shows the base stock 

levels, outsourcing amount, and capacity found by the stochastic approximation algorithm as 

a function of the holding cost. 

Several observations can be made from Figure (3.8). First, note that the capacity without 

outsourcing is much larger than the capacity with outsourcing. This is perhaps not surprising. 
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except that the difference is somewhat larger than the outsourced amount. Thus, these results 

indicate that it may be possible to substantially reduce the required capacity with relatively 

smaller amounts of outsourcing. At the same time, optimal base stock levels are lower when an 

outsourcing option exists. Also, note the interaction between capacity and inventory. The base 

stock levels are increasing in terms of the holding cost (h). whereas capacity is decreasing. This 

illustrates the connection between the two decisions and how determining them simultaneously 

can be beneficial as the optimal cost could not be obtained by ignoring these interactions. 

Finally, it is worth mentioning here that for all the cases mentioned above, a service level of 

6/(6 + h) is obtained through this model. 

Another parameter that is likely to affect the value of outsourcing is the shape of the 

outsourcing cost function. Intuitively, as the per unit cost of outsourcing falls off more sharply, 

that is for lower values of the shape parameter bos in Equation (3.5). outsourcing will be more 

attractive. As an example of this. Table (3.1) shows the results when the shape parameter is 
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Table 3.1 Outsourcing decisions for different outsourcing cost shapes 

Cost function OS Cap 5 Cost 

400 • OS0  5  72 79 179 22129 

400 - OS0  6  69 83 188 23924 

400 • OS0  7  0 157 232 24584 

Table 3.2 Sensitivity of optimal outsourcing to demand variability 

Demand Type OS Cap S Cost 

Erlang-4 86 35 151 16392 

Erlang-2 79 53 167 19594 

Exponential 69 83 188 23924 

HE with SCV= 1.25 67 98 189 25666 

HE with SCV= 1.5 64 112 181 27354 

HE with SCV= •2.0 55 140 198 30650 

varied as bo s  Ç {0.5,0.6,0.7}. The results are as expected, but it is interesting to note that 

the amount outsourced appears to be quite sensitive to the price differential. Indeed, a sudden 

drop in the amount outsourced is observed for the case where the parameter is bos = 0.7 and 

for the other cases the outsourced amount is greater than 50% of the demand. 

Finally, we consider the effects of demand variance on the cost and parameters of the 

chain. In this experiment, the demand mean is kept as 100 units/period, while the variance 

of the demand is changed. For this purpose demand distributions of type Erlang-4, ErIang-2. 

exponential, hvperexponential with squared coefficient of variance (SC'Y) of 1.25 and hyperex-

ponential with SC'V of 1.5 are chosen. 

Intuitively, one would expect cost to increase with increased variability and this is indeed 

the effect observed in Table (3.1). However, the optimal strategic and operational decisions 

also show a clear pattern. From Table (3.2). we observe that the more variability in the demand 

the less reliance on the outsourcing should take place. Intuitively, this is because outsourcing 

is for fixed amounts in each period and more flexibility is needed to respond to high variability. 

Two ways to accomplish such flexibility is to maintain more inventory and have more capacity 
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for a rapid response. Thus, as the variability increases, both the capacity investment and the 

base stock levels should be increased. 



www.manaraa.com

34 

CHAPTER 4 UNUSED CAPACITY COST AND SUBCONTRACING 

COSTS 

The supply chain model presented in the previous chapter modeled the cost of capacity 

and the quantity outsourced as a polynomial function of the quantity itself. Additionally, 

fixed amount of the product is delivered to the supply chain from the external market each 

period. The capacity cost of the model presented in this chapter considers the cost of unused 

capacity and the supply chain depends on the external market only under certain conditions. 

The dependence on the external market is called subcontracting in this chapter and the cost 

of subcontracting is a linear function of the amount subcontracted. 

Like the other solution methodologies presented in this work, a stochastic approximation 

algorithm is employed where the gradients are found using IPA. The validity of the solution 

method is checked graphically using a single stage supply chain and the response of the supply 

chain to the different internal and external parameters is studied. Single and multi-echelon 

supply chains are evaluated in this chapter. 

4.1 Supply Chain Dynamics 

Before discussing the details of dynamics of the model, some new notations used in this 

chapter needs to be established as follows: 

I'SrB' lead time of subcontracted production. 

Z.  triggering level for subcontracting. 

SI 'Fi t .  amount subcontracted. 

C's„b. subcontracting capacity available. 
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UC'c03t. cost of unused capacity. 

SU B c o s t ,  cost of subcontracting an item through a third party. 

The remaining notations used in this chapter are borrowed from the previous chapter. Using 

this notation, the dynamics of the system can be described as follow: 

Step 1. Products coming from both the in-house production and those subcontracted are 

advanced one period. 

Step 2. The current demand. D t .  is revealed and satisfied from inventory l t. Thus, the 

inventory is advanced according to 

/(+1 — I t  4- P i-L ih "t" SUBt — Dt- (4.1) 

Step 3. Production is triggered to bring the inventory to level 5. unless it is not limited by 

the production capacity. CproJ, in which case the produced amount is equal to Cprod- At 

the same time, amounts subcontracted are needed to bring the inventory to level Z as 

long it is not limited by C'suf, . Depending on the relationship between the lead times, 

two scenarios may take place in deciding which amount is decided first. 

Lih < Lsub' amounts produced are decided first according to 

t  — 1 t  — 1 
P t  = max < min < C. 

SUB t  = max < min < f6 

S + D t - I t -  5 Z  S C B n -  Y ,  P n  
I  I  L "= ' -£ / / /  n ='-LlH 

then amounts to be subcontracted are decided according to 

t-i t  
Z + Dt-I t -  Sl 'Bn-  J2 P " 

nzzt  — L$r  n — t -L ÎH 

Lih > Lsub' Amounts subcontracted are decided first according to 

t  — 1 /  — 1 

Z + D t - I t -  Y .  S [ B n ~  E  P n  SUB t  = max < min < (' nib •  
n  =  l -L~:i  n—t — Li  

Amounts produced are found according to 

P t  = max < min < C,,r„/. 
i-i 

S + D t - I t -  Y i  S l  B "  ~  E  p n  
n=f — LI H  n=t  — L IH 

(4.2) 

(4.3) 

-1.4) 

(4.5) 
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The difference between the two scenarios in Step 3 above, are in the limits of the summa­

t ion shown in  Equat ions  (4 .2)- (4 .5) .  Thus ,  i f  we def ine  =  D t  -  I t  -  53n=t-L s t / B  SL Bn ~  

Pni the first scenario equations can be rewritten as 

P t  = max {0, min {C p r o d -  [5 4- >'<]}} - and 

Sl'B, = max {0, min {C'JU6. [Z + Y t  - P(]}}. 

The second scenario dynamics are similarly 

SL'B t  = max {0. min {C'su6, [Z + V'(]}}, and 

P, = max {0, min {Cprod• [•*>' + Y t  - S('6 t]}}. 

Note, from this it is clear that the point at which Z =  S is, in a sense, a switch over point at 

which the  dynamics  of  the  chain  may change.  Say.  for  example ,  in  the  f i rs t  scenar io ,  i f  S > Z.  

then subcontracting will only occur if production capacity is reached, whereas if S < Z. then 

subcontracting may potentially occur regardless. 

The reason for having these two cases is to give an advantage for the mechanism with the 

shortest lead time. At the same time, the equations above will take into account decisions 

taken first if P, is decided first, then the equation for the amount subcontracted will take into 

account this quantity and vice versa. 

As an example of the operation for such a model, consider a supply chain with K = 120. 

S = 150. and Z = 150. The state of the system for some arbitrary segment of a sample path 

is demonstrated in Table (1.1) and Figure (4.1). which show the dynamics of the chain for 

both scenarios of Step 3 above, that is. both when the in-house lead time is shorter than the 

subcontracting lead time (Lih = 2 and Lsub = 3). and vice versa (Luy = 3 and Lsub = 2). 

As expected, in the latter case, much more outsourcing is observed, but even when the lead 

time for in-house production is smaller, some outsourcing exists. 
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Table 4.1 The state of The system for an arbitrary segment of the sample 

path 

period Demand Lih = 2, Lsub = 3 Lih = 3. Lsub — 2 

f t  P t  SUBt I ,  Pt  SUB, 
30 92.7 57.2 92.7 0.0 29.1 92.7 0.0 

31 143.6 6.3 120.0 0.0 -86.4 105.0 38.6 

32 141.9 -15.5 120.0 0.0 -96.9 105.0 36.9 

33 74.1 30.2 119.7 0.0 -29.1 74.1 0.0 

34 48.7 101.2 48.7 0.0 27.0 48.7 0.0 

35 29.5 120.4 29.5 0.0 71.6 29.5 0.0 

36 232.1 -82.1 120.0 7.1 -111.7 120.0 50.0 

37 24.9 12.8 120.0 0.0 -57.1 87.1 0.0 

38 235 -94.9 120.0 19.9 -172.1 120.0 50.0 

39 54.6 -29.6 120.0 0.0 -89.7 105.0 14.7 

40 119.7 -9.3 120.0 0.0 -74.7 105.0 14.7 

200 

150 

100 

Inventory Production Subcontracting 

-200 

S=150 Production capacity=120 
Subcontracting capacity-10 pco 

-50 

-100 • 

-150 

30 35 40 

Figure 4.1 A segment of the sample path for L/h = 2 and Lsub = 3. 
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Inventory Production 
200 

150 

100 

-200 

S=150 Production capacity=120 

-50 • 

-100 -

-150 

60 

50 

40 

30 

20 

10 

Subcontracting 

Subcontracting capacity  ̂0 u^g 

30 35 35 40 30 35 40 

Figure 4.2 A segment of the sample path for Lih = 3 and Lsub — 2-

4.1.1 Supply Chain Cost Model 

Managers usually think that the cost of unused capacity has a major impact on the overall 

cost of the chain. One criteria used in taking decisions with respect to production capacity is 

to maximize utilization. 

Due to this reason, the following cost model is used to capture the effects of capacity: 

COSt capaci ty  — L 1  d cost  '  prod I  t )  •  (4.6) 

The other components of the cost functions to be minimized consist of costs associated with 

the unused capacity, costs related to keeping the inventory which is the holding cost and 

backordering cost. Amounts subcontracted each period will he charged a fixed cost which is 

insensitive to the quantity. 

The cost of keeping inventory that will satisfy the demand consists of the holding cost and 

back ordering cost. This cost is given by 

cost i n t .  =  max{0, /,}•/? + max{0. -/<} • b.  (4-7) 
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The last cost component is the cost of subcontracting some of the demand. This cost for any 

period t is given by 

cost 3 U b =  SU Bcost  •  SUBf (4.8) 

Combining all of the cost components mentioned above, finite and infinite cost models are 

developed and optimized in this work. The cost model for the finite horizon case consisting of 

.V periods is given by 

1 V 

m in Cost  J t n  = — ̂ (t''Cc03, •  {C p r o d -  P t )  +  max{0. /,} • h 
S . O  S . C p r , n {  .  1  ^ _ q  

4- max{0. -/(}•& + SU Bcost  •  SU B t ) .  (4.9) 

The cost model for the infinite horizon case is given by 

1 iV 

min C'ost t n f  =  lim — Y\{UC c o a i  •  (C p r o d ~  Pt)  +  max{0. /,} • h 
s.os.c'proj .\->og ;v  ̂

+ max{0, — /(} • b +  SL B c o s t  •  S i  Bt) .  (4.10) 

The above models are constrained by the model dynamics explained in Equations (4.1)-(4.ô) 

above. This is a stochastic optimization problem since the demand is random. 

Similar to the previous chapter. I PA is used to find the cost gradients with respect to all of 

the decision variables, then these gradients are implemented in the stochastic approximation 

algorithm. Unlike the previous chapter, a simpler SA algorithm is employed with no projection 

algorithm, but fixed step sizes are used till the gradients get to zero. Details about this 

algorithm are presented along with the numerical examples. 

4.2 Unbiasedness of Estimators 

A detailed look over the behavior of the sample path is helpful in understanding how the 

per turbat ion is  genera ted ,  propagated,  and terminated wi th  respect  to  a  smal l  per turbat ion S 

in 5. Z. and Cprod• 'n what follows, a stable chain means a chain that has enough production 

and subcontracting capacity to get the inventory to level S infinite times. The first row of 

F igure 4.3 shows the effect for such perturbation in the value of S. while the second row shows 

the effects of perturbing Z for the same segment of the sample path. 
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There are 2 units lead time between production, subcontracting, and delivery. Other chain 

parameters are presented in the figures. An important observation from these figures is that 

for period where dl/dS = 1.0. then dl/dZ = 0.0 and the opposite is exactly true. For this 

reason, the sample path can be divided into two types of segments - type I, where dl/dS = 1.0 

and type II, where dl/dZ = 1.0. The former type is initiated once the subcontracted amount 

is to bring the inventory to level Z for which case dSUB/dZ = 1.0. 

This perturbation propagates to the inventory and terminates once the produced amount 

brings the inventory to level 5 for which case dP/dZ = —1.0. Starting a segment of type II 

means the end of a segment of type ,1 since dSUB/dS = —1.0 and terminating a segment of 

type II initiates a segment of type I since dP/dS = 1.0. This leads to the following proposition 

that  wi l l  used to  show the  opt imum parameters  wi l l  a  achieve  a  service  level  of  b/b  +  h.  

Proposition 3 For a  s table  chain and for  the  inf ini te  horizon case .  E[dP/dS]  =  — E[dP/dZ]  

and E[dSV B/dS]  =  -E[dSUB/dZ\ .  

Proof:  The discussion presented above shows that a segment of type II is initiated with a 

period n having dSl'B/dZ = 1.0 and dSUB/dS = —1.0 and terminated at period k where 

dP/dZ = —1.0 and dP/dS = 1.0. These are similar periods to n and k, where the production 

and subcontracting derivatives are different than zero. 

Figure 4.3 shows a part of a supply chain having a production power of 80 units/period and 

the maximum amount that can be subcontracted is 50 units/period. The inventory triggering 

level is 100. while the subcontracting triggering level is 90. The dashed lines (- -) in the first 

row o f  f igu res  shows  wha t  wou ld  happen  i f  t he  inven to ry  t r igge r ing  l eve l  i s  pe r tu rbed  by  6 .  

while the second row shows what happens for a S perturbation in the subcontracting triggering 

level. 

The figure shows that is either 0.0 or 1.0, and similarly. ^ can be only 0.0 or 1.0. For 

p e r i o d s  i n  w h i c h  t h e  c h a i n  h a d  t o  s u b c o n t r a c t ,  t h e  s u b c o n t a c t e d  a m o u n t  i s  p e r t u r b e d  b y  6 .  

if Z is perturbed by S which leads to having ^ = 1.0 and = 0.0 as shown in periods 7. 

10. 11 and 12. Once the supply chain is able to produce to get the inventory to level S. then 

= 1.0 and ^ = 0.0 as shown in periods 7 and 12 respectively. 
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Figure 4.3 Perturbation due to S and 2 



www.manaraa.com

42 

A change à in capacity will affect the produced amount, if the produced amount is up to 

the maximum capacity level, otherwise, it will be zero. This perturbation will propagate to the 

inventory and accumulate there. This perturbation is terminated once the produced amount 

is to bring the inventory to S or if the chain subcontracts an amount to bring the inventory 

to Z. Figure 4.5 shows the possible scenarios that might take place among the derivatives of 

inventory, production, and subcontracting quantities with respect to Cpro,/. Proofs regarding 

the unbiasedness of the sample path derivatives can be found in Glasserman and Tayur (34) 

and the proofs from chapter 3 of this work. 

inventory production out sourcing 

8 10 12 14 6 8 10 12 14 

Figure 4.4 Perturbation due to Cp r od 

The unbiasedness of these derivatives with respect to S and Z follows the same line of proof 

as in Glasserman and Tayur (34). The derivatives with respect to Cprod are different, since it 

may propagate and accumulate but as shown in Chapter 3, the derivatives are unbiased if the 
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stability condition, 

Cprod + E[SUB] > E[D\,  (4.11) 

are satisfied such that the chain can produce to bring the inventory to level S infinite times. 

A problem that might arise with the stability condition above is with cases where Cp rod < 

E[D\. Defining inventory shortfall as V, = S - f t  helps in discussing this situation. For the 

chain to be stable under this condition, it must have 

E [ Y } <  C p r o d .  (4.12) 

This condition guarantees that the chain will produce infinitely often to get the inventory to 5. 

Due to  the  unavai labi l i ty  of  the  probabi l i ty  d is t r ibut ion of  Y.  a  funct ion of  S.  Z.  f (D) .C p r o d 

and CsvBi no precise stability conditions in terms of the above variables are stated. The 

unbiasedness of the cost derivatives in the finite and infinite horizon cases are similar to those 

of Glasserman and Tayur (34). 

4.3 Validation and Numerical Examples 

For the model presented in this work, validity is checked through graphical means by 

running a sample problem. Later in this section, studies are conducted to capture the relations 

between the different parameters involved in the design of the model. 

The initial conditions chosen for the following examples are C'p rod = 1.5E[D], 5 = 2.0E [ D ]  

and Z = 0.5E[D]. A constant step size of 0.5 is chosen and the derivatives are calculated by 

running the model for 100,000 periods. The simulation stops if for 30 consecutive updates for 

the parameters, jdc
dgSt < 0.5, dC

d°J' < 0.5 and ost^ < 0.5. The last values obtained are 

the averages of 30 simulation runs for 100.000 periods for each run. 

4.3.1 Validity Example 

The example used to check the validity of t he chain is for a chain subject to an exponentially 

distributed demand with a mean of 100 units. For this example, b = 100. h = 30, Lm = 

Lsub = 2.0. UCcost  = 10 SUBcost  = 50 and C'„ub = 50. The minimum cost found, using 
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the method described above, is 9080. The optimum parameters are S = 172. Z = L10 and 

CProd = 192. Most of the demand is satisfied through plant production while. 4.1 of the demand 

is satisfied through subcontracting. 

Figure (4.5) shows the cost value with respect to S and Cp r od . Figure (4.6) shows the cost 

as a function of S and Z and Figure (4.7) shows the cost as a function of Cp r od and Z. 

x 10 

Optimum S=172 
Optimum capatity=192 

Û 1 05 

250 

-house triggering level 100 
100 

150 

Capacity available 

Figure 4.5 Cost vs. S and Cprod 

The figures also show the results obtained through the methodology presented in this work. 

The arrow shows the parameters obtained by optimizing the model discussed above and these 

values coincide with the minimum values checked graphically. 

4.3.2 Holding Cost Effects 

Holding cost is expected to be one of the most influential cost factors in the behavior of 

this supply chain. Thus, in this section we evaluate the effect of the holding cost on cost and 

decision making. We use the same settings as in the validation study of section 5.1 above. 
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Figure 4.6 Cost vs. S and Z 
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Figure 4.7 Cost vs. Cp r od and Z 
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except the holding cost is allowed to range between 10 and 90 with increments of 10. that is. 

h € {10.20 90}. The results indicated in Figure (4.8) that shows the best cost obtained. 

while the values of the decision variables that obtain this cost are shown in Figure (4.9). 

08 

0.6 

04 
50 

holding cost 
70 

Figure 4.8 Cost vs. holding cost 

The results obtained are largely intuitive, holding cost increases total cost increases, but 

the rate of increase is decreasing. The decreasing rate is explained by the fact that as the 

holding cost increases, less and less of the peak demand is satisfied by keeping large inventories. 

Accordingly, the in-house production triggering level decreases as a function of the holding 

cost. Conversely, the capacity should be kept higher if the holding cost is high. The optimal 

subcontracting triggering level stays relatively stable and does not have a monotonie trend. 

One of the more interesting features is the discontinuity at h =  60. which corresponds to 

Zm = .S". where * represents the optimum solution; that is. the optimal triggering level is the 

same for both in-house production and subcontracting. As noted in section -i. 1 above, this is a 

point where the dynamics of the supply chain can be expected to change. In particular, when 
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Figure 4.9 Chain Parameters vs. Holding Cost 

h < 60 and Z" <  S",  then outsourcing will only occur if the production capacity is reached: 

whereas, when h > 60, this is no longer true and outsourcing may be employed even though 

production is not at its full capacity. The reason why h = 60 corresponds to this critical points 

is that in this case there are two ways to obtain the same cost. For an item produced in-house. 

a holding cost of 60 will be paid for the product while on the pipeline, but a 10 will be saved by 

producing the item in-house. The sum of these two costs makes subcontracting cost equivalent 

to production cost thus. 

Lih • h  =  SL'B c o s t  + Lih • LC\ : o s l .  (4.13) 

This switch over point for the given cost parameters of the chain can be calculated from 

h =  + 
Lih 

50 
= — + 10 = 60. 

For a particular supply chain, determining if h <  + i 'C\ o s t  or vice versa should be of 

considerable significance, as the optimal in-house production triggering level will be substan­

tially different, depending on which condition holds. 
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4.3.3 Subcontracting Cost Effects 

The final cost parameter of interest is the cost Si ; B c o s t  of subcontracting. Similar results 

as before are shown in Figures (4.10) and (4.11). and as expected, the total cost increases as 

the subcontracting cost increases. Note, however, that the rate of change in the cost decreases 

very dramatically and is almost flat for high subcontracting costs. This is because at a high 

subcontracting cost, very little is subcontracted and the total cost thus becomes insensitive to 

changes in this cost factor. 

9200 

9100 

9000 

8900 
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subcontracting cost 
60 

Figure 4.10 Cost vs. Unused Capacity Cost 

From the figures, we note that the subcontracting triggering level Z" decreases steadily 

as the subcontracting cost increases and the optimal capacity C*r0(i  increases to compensate. 

On the other hand, there is a clear discontinuity for the in-house triggering level at the point 

Si'Bcost  = 20. where Z" = 5": that is. the two triggering levels are the same. 

1. When Z'  > S~.  then the in-house production triggering level should be increased as a 

reaction to increased subcontracting costs (and less subcontracting). On the other hand. 



www.manaraa.com

49 

200 
• In house triggering level 
0 Subcontracting triggering level 

-9- Capacity 

160 

140 

120 

100 

20 40 
subcontracting cost 

60 

Figure 4.11 Chain Parameters vs. Subcontracting Cost 

the capacity level should not be changed. 

2. However, when Z" < 5", the in-house triggering level need not be changed, but the 

capacity should be increased to compensate for less subcontracting. 

The explanation of these optimal decisions again stems from how the dynamics of the chain 

change at the point Z~ = S*. In particular, when Si'Bcost  > 20 and Z' < S' then outsourcing 

will only occur if the production capacity is reached: whereas, when SUBcost  < 20. this is no 

longer true and outsourcing may be employed even though production is not at full capacity. 

The argument for why the point where Z~ = S~ occurs, where SUBcost  = 20. is the same as 

before, that is. by rewriting Equation (4.13) we get 

Si  B c o s t  = LiH{h -  UC'cost )  = 1 • (30 - 10) = 20. 

Note, if I)  <  UC' r „ s l .  then we would always have Z'  > S" and inventory, rather than capacity, 

which should be used to compensate for higher subcontracting costs. In other words, capacity 
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Table 4.2 Sensitivity of Optimal Subcontracting to Demand Variability 

Demand Type Z* A"" s- COST' 

Erlang-4 112 124 144 5723 

Erlang-2 112 149 158 7072 

Exponential 110 192 172 9080 
HE with SCV=1.25 110 215 170 10658 
HE with SCV=1.5 110 236 168 11074 

HE with SCV=2.0 107 288 164 12388 

should be constant and the decision-making reduces to determining the optimal triggering 

levels for in-house production and subcontracting. 

4.3.4 Demand Variability Effects 

Our final numerical results consider the demand variability by looking at demand distribu­

tion that have different squared coefficients of variance (SCV). The results are shown in Table 

(4.2) and. as expected, increased variability results in increased cost to the chain. Also, to 

react to the higher variability, the optimal capacity (C*rùd) increases rather rapidly. 

There are. however, some results that are not quite as obvious. Specifically, one might ex­

pect that subcontracting might increase as a method to deal with higher variability. This is not 

the case, and indeed, the subcontracting triggering level (Z") decreases slightly with increases 

in variability. This decrease is fairly small, however, and we conclude that subcontracting is 

insensitive to the amount of variability. The behavior of the optimal in-house triggering level 

is also somewhat unexpected. Instead of simply increasing as a function of variability, which 

would imply that more inventory is kept on hand to react to high unexpected demand, it 

reaches a peak at SCV = 1 (exponential distribution), and then decreases. 

4.3.5 Multi-Echelon Systems 

For multi-echelon supply chains, it is shown by Glasserman (36) that the operating costs 

of a supply chain are not affected if the upper stages, capacities are higher than the down 

stages, capacities. Based on this argument, an additional constraint is added to the design 
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of multi-stages supply chains and this constraint is that for a supply chain having k stages 

^~'prod - (-'prod— -  ̂ p,w addition to the previous constraint, designing k stages supply 

chains requires the following constraint Sk > Sk~1.... > S1. 

Step sizes are updated such that the capacity step sizes are l . O / k .  while that for the base 

stock levels and subcontracting triggering levels is taken to be 1.0/[_ArJ, where k is the iteration 

number. The gradients are calculated by running the simulation for 10,000 iterations and the 

final cost reported is after running the simulation for 100,000 iterations. 

The first experiment conducted is for two-stage supply chains without the subcontracting 

option. This supply chain has the following cost structure; b = 100. h l  = 30.h2 = *20 L\h = 

L2
[ff  = 1.0. and LrCco,t = 100 for both stages. For this example, the minimum cost found using 

the method described above is 9208. The optimum parameters are S1 = 132. S 2 = 189 and 

C lrod = t'îrod = G'!' 

To study the effects of subcontracting, the previous example is extended by allowing sub­

contracting at both stages. The subcontracting parameters used are: Si Bx
cost  = 500 and 

^SUB — ^sub — 2- SL'B*ost  is taken as 2-10 and 140 and for both cases the optimum 

solution found happens to be the same: then the same parameters are used. 51 = 190. 

S2 = 236.C'prorf  = 49.Cprù,y = 49, Z1 = —30. Z1 — -236 and the cost is 8229. The amount 

subcontracted at the first stage is 5 units/period, while the in-house production covered the 

other 45 units. Experimenting with different cost structures determined that subcontracting 

is shown to be an attractive option for the latest stage, while not for the upper stages. 

The effects of product differentiation is studied through a three-stage supply chain having 

b = 100. /;' = 30. L\h = 1.0 and irC'cost = 100 for all of the stages. The holding costs for 

the upper stages are taken to be h2 = 25. /i3 = 20.h2 = 20, h3 = 10 h2 = 25,/i'J - 2. and 

h2 = 5,/i3 - 2. The previous four scenarios are indicated as cases A.B.C. and D. respectively. 

It is seen from Table (4.3) above that the optimum solution is to keep a high inventory where 

the holding cost is low and minimize the capacity at that stage. It is also seen that for cases 

A and B. the capacities of the stages are the same and also that the differences in base stock 

levels is to equal to this capacity. Case D shows that the upper two stages have the same 
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Table 4.3 Effects of Product Differentiation in a Multi-Stage Supply Chain 

Case S 1  C' l
p r o d  S2 C' p r o d  S* C$ r o d  Cost  

A 301 57 359 57 403 57 13774 

B 281 57 338 57 393 57 12786 

C 190 61 238 61 310 60 11418 

D 86 70 293 63 367 63 9627 

capacity and the difference in base stock levels is equal to this capacity. 
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CHAPTER 5 COLLABORATION 

Collaboration is a relatively new concept gaining more attention in the world of supply 

chains. This work addresses the subject of collaboration between two different supply chains 

or horizontal collaboration, as mentioned in the introduction of this work. Horizontal collab­

oration lacks the required quantitative studies that show its benefits and applications. This 

work considers two types of horizontal collaboration: one by trading the unused capacity of the 

supply chains, while the other by trading finished products from the supply chains inventories. 

Unlike the subcontracting model studied in the previous chapter, the amount of the external 

products that can be purchased from the other supply chain fluctuates from period to period. 

The supply chain selling units of unused capacity tries to sell all of the unused capacity. In the 

case of selling inventory, a safety level is maintained such that the amount sold is limited by this 

safety level. Inventory collaboration requires the use of two levels to implement collaboration: 

level Z1 is used by supply chain i  to trigger the purchasing of products from the other supply 

chain, while level V limits the amount sold by the supply chain. These two levels are called 

purchasing and selling triggering levels. Only the purchasing triggering level is employed in 

the case of capacity collaboration. 

To indicate the quantity bought by supply chain, i. from the other supply chain at time 

period Z. Cj is used to show this quantity, while the cost of items bought from the other chain is 

indicated as C'cosl. L'col is used to indicate the lead time needed to deliver the traded products 

in case of inventory collaboration, manufacture, and delivery of these products in the case of 

c apac i t y  c o l l abo r a t i on  t o  supp ly  cha in ,  i .  
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5.1 Capacity Collaboration 

The two supply chains can collaborate by trading unused capacities. Each supply chain 

prefers to keep the capacity for its own production, but in case of the availability of some 

unused capacity, this unused capacity can be sold to the other chain. Similar to the model 

presented in Chapter 4. a triggering level Z is used when the supply chain tries to buy external 

products to get its inventory to this level. The supply chain has excess capacity and tries to 

sell all of its unused capacity. 

5.1.1 The Model 

For two supply chains employing capacity collaboration, the dynamics of one of these supply 

chains is described below. The notation used shows the dynamics of supply chain 1. but the 

same dynamics apply for supply chain 2. 

Step 1. Products coming from both the in-house production and those obtained through 

collaboration are advanced one period. 

Step 2. The current demand, D l
t , is revealed and satisfied from inventory /'<. Thus, the 

inventory is advanced according to 

/'t+i = /' (  +  P l
t - L \ h  + C ' t  —  D l

t .  (5.1) 

Step 3. Production is triggered to bring the inventory to level S, unless it is not limited by 

the production capacity Cprod, in which case the produced amount is equal to Cprod• The 

produced amounts are decided according to 

P\ = min < C' p r o d "  S 1  + D l  t  -  f [  t  -  C\-  £ P'„ 
ri = (-L',h n=t-L',h 

(5.2) 

At the same time, amounts to be bought from the other supply chain are either to bring 

the inventory to level Z or it is not limited by the unused capacity of the other chain. 

C l, = min Z l  + D\  
f - i  

/ '  - Z E . (5.3) 
n  =  t - L l  

c „  n  =  t - L l  
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5.1.2 Supply Chain Cost Model 

The cost function to be minimized consist of costs associated with the unused capacity, costs 

related to keeping the inventory, which is the holding cost, and backordering costs. Amounts 

bought from the other supply chain at each period is charged a fixed cost, insensitive to the 

quantity. 

The cost of capacity is captured through the unused capacity, 

Cost 1  capacity = VC' 1  
C03t ' (Cp r o d ~ P* <)•  (5-4) 

The cost of keeping inventory that satisfies the demand consists of the holding cost and back 

ordering cost. This cost in any period is given by 

C'ost l i n v  = max{0, /\} • h x  + max{0. -/%} - b l .  (5.5) 

The last cost component will be the cost of buying some of the products from the other chain. 

This cost for any period t is given by 

Cost x
c o l =C\ . o s t -C\ .  (5.6) 

Combining all the cost components mentioned above, finite and infinite cost models can be 

developed that are optimized in this work. The cost model for the finite horizon case consisting 

of ;V periods is given by 

1 ,v 

M /Tr-1 CoStl  = v • l C ' l p r u d  -  p t )  + max{0. //} - h l  

S .Ob .Cprod :V (=0 

+ max{0. —//} • b l  + C l
c u s t  • C'1/). (5. i ) 

The cost model for the infinite horizon case is given by 

I 'v 

-1 "7" , Cost ' = J i rn Tf - pt ) + max{0. //} • h1 

+ max{0, —//} •  b l  + C \ - o s t  - ( ' % ) -  (5-8) 

The above models are constrained by the model dynamics explained in equations (5.1)-(5.3). 

Again. IRA is used to find the gradients of the cost models with respect to all of the decision 

variables and a simple stochastic approximation technique is used to find the gradients. 
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5.2 Inventory Collaboration 

In this model, amounts to be exchanged between the supply chains are taken from the 

finished goods directly. Steps 1-3 in the previous model are repeated for this model, but the 

amount that the selling supply chain can deliver can be limited by its inventory status. The 

amount acquired through collaboration is given by: 

C\ = min {  I f  -  y' '  -  D 2  
t - 1  

i Z l  + D l  t  -  [ l  t  -  £  c l
n  -  53 P 

n — t - L l
c „ i  n = t  —  L' , a 

(5.9) 

In other words, the amount exchanged might be limited by a the amount of inventory available. 

Similar cost equations as those presented by Equation (5.7)-(5.8) are considered for the 

case of inventory collaboration. 

5.3 Unbiasedness of the Derivatives 

Unbiasedness with respect to 5 and Cp r od are already shown in the previous chapter. The 

unbiasedness of the derivatives with respect to Z and V* follows the same line of proof as that 

for S and Cp r o , i-

5.4 Numerical Results 

The question asked here is which type of collaboration is better and under what circum­

stances? No specific answer is given in this section, but a sense of the behavior of the supply 

chain for different parameters is presented. 

It is assumed in the pilot studies presented that buying units of unused capacity is cheaper 

than buying finished products. The characteristics of the lead times is the opposite, it takes 

more time to deliver a product from its manufacturing source to the buying chain but less time 

to deliver this product if it is already finished. 

The pilot study considers two supply chains each having h = 30. b = 100. VC = 10 

and L,h = 1.0. For the products exchanged through collaboration. Lcoi = 1.0 in the case of 

trading finished products and Lccoi = 2.0 for trading units of unused capacity. For the studies 
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presented, the parameter changed is Lcoi • Cc03t to show the relationship between time and 

money, called pipeline collaboration cost (RCC). 

Figures (5. l)-(5.3) show the cost as a function of the PCC for a supply chain collaborating 

with another supply chain through inventory and capacity. The two supply chains are sym­

metric and have the same parameters as those described above. All of the figures consider 

iid demand with a mean of 100 where Figure (5.1) shows the response of a demand having a 

squared coefficient of variance SCV of 1.0 and the SCV for the demand in Figure (5.2) and 

Figure (5.3) are 0.25 and 2.0. respectively. 

Examining these figures, it is seen that some savings are obtained for all of the cases con­

sidered. Savings due to capacity collaboration seems to be higher than inventory collaboration. 

Still, this conclusion cannot be generalized to other working environments. The first conclusion 

is that collaboration is beneficial for supply chains and lower costs are obtained if compared 

to the independent supply chain. 

Figure (5.-1) shows the average amount of demand that is satisfied through collaboration 

for the three types of demand. It is clear that the higher the demand variability , the higher 

the amount of demand satisfied through collaboration. It is also clear that the amount of 

the demand satisfied through collaboration depends on the PCC. The higher the pipeline 

collaboration cost, the less collaboration activity that takes places between the chains. 

Another observation realized out of the same figure is that for the highly variable demand, 

the supply chain is able to find an opportunity for cost savings even for high pipeline collabo­

ration cost. The reason for this behavior can be explained by the fact that the probability that 

the supply chain faces consecutive periods of high demand is high for highly variable demand. 

Faced by this situation, some items might be backordered for multiple period as in the case of 

the independent supply chain, which leads to a high penalty paid by the supply chain to pay 

the backordering costs. So. the high cost of collaboration is justified in such situations. 

Figure (5.5) shows the parameters found for capacity and inventory triggering levels by 

optimizing the model where the demand has a SCV of 1.0. It is interesting to note that 

the inventory triggering levels for capacity collaboration is slightly higher than those levels 
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Figure 5.1 Cost as a function of PCC for an exponential demand having a 

mean of 100 

6250 
Inventory Collaborate 
Capacity Collaboration 
Without Collaboration -6200 

6150 

6100 

6050 

o 6000 

5950, 

5850 

5800 

5750 
100 150 200 250 400 450 600 300 350 500 550 

PCC 

Figure 5.2 Cost as a function of PCC for a l-Erlang demand having a mean 
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Figure 5.4 Percent of the demand satisfied through collaboration 
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employed for inventory collaboration. Similarly, the capacity kept for the case of inventory 

collaboration is less than that kept for capacity collaboration. This behavior is justified, since 

better capacity utilization is achieved in the case of capacity collaboration and more capacity 

is needed at the same time. 

The collaboration parameters employed show similar purchasing levels for both capacity 

and inventory collaboration. The selling level used in the case of inventory collaboration show 

an opposite behavior to the purchasing level with respect to the pipeline collaboration cost. The 

supply chain will depend less on collaboration as the collaboration cost goes up. Translating 

this behavior into parameters means the purchasing levels need to decrease and the selling 

levels need to increase until both reach levels in which no collaborations takes place. 

250 

240 

Capaoty 

230  ̂
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210 

S 200 
-O- Capacity Collaboration 
—t— Inventory Collaborator 

Without Collaboration 190 

160 

170, 

Inventory 
160 

150 
150 200 100 250 300 500 550 350 400 450 600 

PCC 

Figure 5.5 Optimum parameters used for capacity and inventory triggering 
levels 

Figure (5.7) represents the optimum costs for supply chains having h = 10. i'C' = 50 and 

facing an exponential demand with a mean of 100. Figure (5.8) represents the percentage 

of demand satisfied through collaboration, while Figure (5.9) shows the optimum parameters 

found for capacity level, inventory level, and the collaboration parameters. 

Since the relative costs of h and I'C' are switched for this sample study, the inventory 
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Figure 5.6 Optimum parameters used for collaboration 

collaboration showed more costs savings. Similar to the previous sample study, less capacity 

and more inventory are kept for the supply chains employing collaborations relative to the 

independent supply chains. The levels maintained in the case of capacity collaboration are 

higher than those employed for inventory collaboration. 

The deviation in the inventory triggering levels is higher for h = 10, UC = 50 and less de­

viation is noticed for h = 30. i'C' = 10. The difference in capacity shows the same behavior for 

both cases. The reason behind this can be explained by considering the capacity collaboration 

scenarios for the two sample studies. For UC = 10 and h = 30. it is much cheaper for the chain 

to keep more capacity than inventory to satisfy the demand, while for UC = 50 and h = 10. 

it is the opposite. Faced by this situation, the supply chain prefers to keep more inventory 

and collaborate less than the supply chain having inventory collaboration. Additionally, since 

the inventory is better utilized in the case of inventory collaboration, the amount of inventory 

maintained is less than that maintained for capacity collaboration. 

It is also noticed that the value of Y remained constant, while the amounts traded through 

collaboration are controlled by Z. The higher the PC'C is the lower the Z. The drop in Z 
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Figure 5.7 Cost as a function of PCC for a supply chain with h = 10 and 
L'C = 50 

for the inventory collaboration case is sharper than that of the capacity collaboration case. 

Intuitively, this may be due to the fact that the low holding cost will cause the supply chain 

to keep more inventory, while the high cost of PCC is still considered for the case of capacity 

collaboration, since UC is high. 

The reason behind having a constant Y might be explained by looking to the values of S. 

It is noticed that the high value of S leads to having more a average inventory. Having high 

inventory, the supply chain prefers to keep a high S - V value and since changes in S are not 

high, this will lead to similar changes in Y\ 
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CHAPTER 6 CONCLUSIONS AND FUTURE RESEARCH 

Several supply chain models are proposed and studied in this work. In each model, the 

mutual relation between strategic and operational decisions is examined. In addition, de­

cisions regarding subcontracting, outsourcing, and collaboration are introduced within these 

new models. Stochastic approximation (SA) algorithms are suggested to optimize these models 

and infinitesimal perturbation analysis (IPA) is the method employed to find the gradient of 

the cost function with respect to all of the decision variables involved in the models. 

This chapter is divided into the following sections: The first section presents conclusions 

regarding the benefits, advantages and disadvantages of the technical approach, that is. using 

IPA to optimize the supply chain models. The second section summarizes the managerial 

observations obtained front the different models presented in this work. Finally, future research 

plans and possible extensions to this work are presented in the last section. 

6.1 Using IPA for Supply Chain Optimization 

Estimating the cost of supply chains subject to stochastic demand often requires the build­

ing of simulation models for these chains. The advantages, disadvantages, and computational 

experiences obtained through the use of IPA when optimizing such models can be described 

as follows 

1. IPA Versus Finite Difference 

The finite difference method is commonly used to estimate the gradients of the stochastic 

system with respect to the different decision parameters. It requires running two simu­

lation runs per parameter and calculating the change of the stochastic system response 

with respect to this change in the parameters. The IPA approach has the advantage 
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of finding the sensitivity of the cost function with respect to any number of parameters 

through a single simulation run. For the single stage supply chain model, it is necessary 

to have four simulation runs to calculate the sensitivity of the supply chain with respect 

to the three decision variables involved in the model if the finite difference method is 

used. The IPA approach cuts this number and only one simulation run is needed to 

calculate these sensitivities. 

2. Applying IPA 

Applying IPA to optimize the supply chains models presented in this work requires some 

conditions to be met. The sample path should be differentiate with respect to the 

decision variables and at the same time the expectation of the derivative should be finite. 

The supply chains structures considered in this work are differentiate with respect to 

the decision variables. The stability of the supply chain guarantees that the derivatives 

of the sample path is less than infinity. This stability condition allows the usage of IPA 

to optimize these supply chains for the infinite horizon cost model. 

3. Stochastic Approximation and IPA 

No rule of thumb method can be suggested about the proper SA algorithm to use with 

the gradients found using IPA. For the models using outsourcing, a projection algorithm 

is used, since the cost is very sensitive to the amount outsourced and at the same time 

there is a certain range to be inspected for the amount outsourced. For the single stage 

supply chains, with subcontracting, no special SA algorithm is used, but for muiti stage 

supply chains, varying step sizes were required for the capacity and the triggering levels. 

4. The Validity of the Proposed Method 

The validity of the proposed solution method to converge to the optimum parameters 

was checked graphically for single stage supply chains. It is shown that the minimum 

cost parameters are obtained through the proposed method. For the multi-stages supply 

chains and for supply chains having collaboration, the convexity of the models cannot 

be demonstrated graphically nor mathematically. For the multi-stage models, it is seen 
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that the behavior of the supply chain for constant, early and late added values is similar 

to previous research in this field. The cost of the collaborative models is compared to 

supply chains working independently and it is seen that a lower cost is obtained for the 

collaborative models. 

6.2 Managerial Insights 

Several models are studied in this work and the effects of different parameters on these 

models are analyzed. Several observations and conclusions can be made about these models 

that have impact on managerial practices: 

I. Strategic and Operational Decisions 

The behavior of the supply chain depends on both the strategic and operational param­

eters simultaneously. The importance of optimizing both of these parameters simultane­

ously clearly appears in the case of optimizing the multi-echelon supply chain. For cases 

having a sudden differentiation in the value of the product, while the cost of unused 

capacity is kept the same, it is seen that for the stage just before the differentiation, a 

large amount of inventory is kept, while the capacity is lower than down stream stages. 

For cases where the added value to the product is kept constant, all the stages have the 

same amount of capacity. 

As an example, for scenario D presented in section 4.3.5. optimizing the triggering levels 

only, while keeping the capacity constant at 70 units/period, the optimum cost found is 

10.910 with 5 l  = 95, S2 = 347 and S3 = 347. Optimizing the triggering levels of the same 

supply chain but with a capacity of 63 units/period, the optimum cost found is 10.190 

with S1 = 165. S2 = 347 and S3 = 347. The costs found by optimizing the triggering 

levels alone are higher than the cost found by optimizing capacity and inventory levels 

simultaneously, which is 9.627. It is clear from this example and the example presented 

in Chapter 4 that significant savings are obtained by simultaneously optimizing all of the 

decision variables. 
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2. Subcontracting and Outsourcing 

For certain cost structures, the supply chain costs can be reduced by relying on the 

external market to satisfy the demand. Although no easy to use formulas are presented to 

judge when or when not to implement these practices, the following general observations 

can be realized from the models 

(a) Internal Versus External Costs: The internal cost of production is the cost 

of carrying excess capacity and the holding cost for the work in process inventory 

and finished goods inventory. The external cost is the per unit cost in cases of 

subcontracting and the overall cost in case of outsourcing. The lower the external 

costs compared to the internal costs, the more savings are obtained by relying on 

subcontracting and outsourcing. 

(b) Time Effects: The relationship between in-house production lead time and exter­

nal production lead time also plays a major impact, if any of the methods above 

is applied. The lower the external production lead time is more attractive as this 

alternative becomes. 

(c) Demand Variability, Internal, and External Production Flexibility: Higher 

variability of the demand requires a more flexible supply chain. This flexibility 

either stems from internal and external production. Outsourcing lacks the flexibility 

that subcontracting has but subcontracting has the disadvantage of high lead time 

compared to internal production. The examples conducted in this work show that 

to improve the flexibility of supply chains, it might be more necessary to depend on 

internal production rather than external production. 

3. Collaboration 

The collaboration models suggested in this work show that the supply chains can reduce 

their costs if they trade finished products or unused capacities in case of a high demand. 

If finished goods are traded, it is better for the supply chain to put a limit to the amount 

t hat can be sold and a triggering level that will show under what condition is it beneficial 
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to buy expensive products or capacity units from the other supply chain. If some of the 

capacity is unused, then it is preferable for the chain to sell all of this capacity to reduce 

its cost. 

6.3 Future Research 

Various extensions can be made to this work both in terms of the optimization technique 

and the supply chain models. 

1. Supply chain models 

Changes can be introduced to the supply chain models presented in this work. Some of 

these changes can be summarized as follows. 

(a) Correlated Demand: The assumption of having a demand that is independent 

and identically distributed iid can be changed by having correlated or seasonal 

demand. Forecasting models can be used to predict the demand and production 

can be set according to these predictions. 

(b) Different Cost Models: Different cost models can be introduced in this work. 

The capacity cost can be modeled using different polynomial functions or through 

means other than the unused capacity. Set-up costs can be introduced for starting 

production or for trading products. The subcontracted cost can be a function of 

the quantity. 

(c) New Supply Chain Aspects: Various aspects of the supply chain can be added 

to the models presented, including the location and allocation problems by answer­

ing the questions of where to open the facilities and which facility shall serve a 

customer area. The transportation problem between the production facilities and 

the warehouses and also between the warehouses and the customers can be added 

to this model. 

(d) Scope: The models presented can be used to cover different scopes of the sup­

ply chain. These scopes can be those related to the distribution problem and the 
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assembly problem. 

(e) Objective functions: Other objective functions can be optimized other than the 

cost function. Maximizing revenue can be a new objective function to be optimized. 

Maximizing the service levels can be another objective function to be considered. 

2. Optimization 

Other optimization models can be used to optimize the models presented in this work. 

Using discrete decision variables instead of continuous allows the usage of the differ­

ent techniques presented in the literature review chapter to optimize stochastic systems 

having discrete parameters. 

Finding an equation that will model the expected short fall in terms of the different 

decision parameters will help in finding an expectation for the cost without carrying 

simulation and to optimize the model directly without the need to estimate all of these 

gradients. 
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APPENDIX A IPA DERIVATIVES 

The derivatives used in this work are divided into three sections; the first and second 

sections represent the derivatives of the models presented in Chapters 3 and 4 of this work. 

The third section shows the derivatives used for the collaboration models. 

IPA Derivatives of Chapter 3 

In this section we present the IPA derivatives used in the paper. The primary derivatives 

are divided into three sets, each set showing the derivatives of I and P with respect to S. 

Cos, and Cc ap. respectively. The amount outsourced each period is insensitive to the decision 

variables. 

Set 1. In-House Base-Stock Derivatives 

dlt+1 _ + dP t-L,h 

(IS (IS dS 
0. 

(A.I) 

when P t  = 0 

dP 
dS 

0. when capacity is bound 

when demand is bound 

Set 2. Production Capacity Derivatives 

dlt+\ dl t  _ dP t-L lh  
— ,x-f T (A.3) 
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1. 
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Set 3. Outsourcing Derivatives 

dft+i _ dl t  dP t-L th  

dOS 

dPt 

dOS 

dOS +  dOS 
0. 

+ 1 • (A.5) 

when P t  = 0 
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\n=t-L,h  ) 

The cost derivative with respect to S, Ccap  and OS are as shown in the following three equations 
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IPA Derivatives of Chapter 4 

In this section, the IPA derivatives used in the paper are presented. The primary derivatives 

are divided into three sets, with each set showing the derivatives of /, P and SUB with respect 

to 5. Z, and Catp. respectively. Only the case where < Lsub will be presented. 

Set 1. In-House Base-Stock Derivatives 

dl, i+i 
dS 

dit [  dP,.Lth  |  dSl'B t-Lfub  

dS dS dS 
(A.10) 
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dF, 

dS 

0. 

1 - ^ - f  T '  #  
. n=t-L,h 

n=t— 1 

£ 
.n=t-Ltfl 

when P t  = 0 

when capacity is bound 

when demand is bound 

Set 2. Production Capacity Derivatives 

dl tx + i dit dPi~Lxh  ^dSl-B t-L ,  

dC, 
+ 

prod dC prod dd prod 

f 0. 

+ 
dC'r, prod 

dP, 

dC prod 

1. 

dl 
C, prod 

n=t —1 

n=f — 1 

^n=t-L,h 

dSL'Bn  

dPn 
dC\ 

dC, 

when Pt = 0 

when capacity is bound 

when demand is bound 
\n=t-L,h  

Set 3. Subcontracting Triggering Level Derivatives 

dlt+i 
dZ 

dP t  

dZ 

dl, . 

ïz + ~J~ + —z— 
r o ,  

0, 

1 - » " ip 1 iEa 
17. 

>n=t-L,h 

n%~1  dSCB„ 
£— t  dZ 

Kn=t-L,h  

For period n. the cost function derivatives are 

when Pt = 0 

when capacity is bound 

when demand is bound 

Set 1. Cost Derivative with Respect to In-House Base-Stock Derivatives 

(A.11) 

(A. 12) 

(A. 13) 

(A. 14) 

(A. 15) 

dSCB t_L .  

dS dS dS dS 

(A.16) 

Set 2. Cost Derivative with Respect to Production Capacity Derivatives 

dC'ost, =  h .dIt_Hl  > 0}+6 -^-l {/> 0}-r(\.osr
(^^+SUB,osr ( lS l  

dC\ prod dC'nr od dC prod dC\ prod dd prod 
(A. 17) 
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Set 3. Cost Derivative with Respect to the Subcontracting Triggering Level 

(A. 18) 

Derivatives of the Collaboration Models 

Two collaborative models are discussed in this work, the derivatives of the model dynamics 

are shown below. 

Capacity Collaboration 

Set 1. In-House Base-Stock Derivatives 

r/.S'1 

dP,1  

dS1  

dCOL) 

dS1  

dlU i 
r/.S'-' 

r//,1 dCOL\_L 

dS1  +  dS1  

0. 

0. 

i di\ 
l-~ dS* ~ 

(  n=t  — 1  

+ 
1 
col 

dS1  
(A.19) 

. n=t-Ll. i 

dCOL1 

<n=t~L!h 
dS1 

2^, 

when P/ = 0 

when capacity is bound 

when demand is bound 

when COL} = 0 

when unused capacity is bound 

(A.20) 

n=t-L!h 

( A .21 ) 

n=t— I 
dCOL\ when demand is bound 

dPt-n dCOL1  
t_L\  

ÏL + 
dS2  dS2  + dS-

(A. 22) 
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rf/V 
dS2  

dC'OL\ 

dS2  

0. 

0. 

•S" 

n=t— 1 

- n=t~L\h 

dCOL1  

dS* 

r o .  

-S-(T s 
>n=t~L!h 

n=t— I 

n=t-L\h 

dCOL1  

dS^~ 

Set 2. Production Capacity Derivatives 

when P, = 0 

when capacity is bound 

when demand is bound 

when COL} = 0 

when unused capacity is bound 

(A.23) 

when demand is bound 

.(A.24) 

(A.25) 

(IP,1 

dC'OL] 

+ i _ 

(ICOL\_L I 
cot 

0. 

1, 

dl 
'C? 

n=t— I 

£ 
"=t-Llh 

"=f-1 rfCOL'-
Z-v jr-1 

when P/ = 0 

when capacity is bound 

/CO/-

dC'OL', , 

(A.26) 

(A.27) 

when demand is bound 

when COL ' = 0 

when unused capacity is bound 

(A.28) 

when demand is bound 

(A.29) 



www.manaraa.com

76 

dC'OL} 

= 
n=<— 1 

e je7'  
Prod I n=t — Ll. Prod 

dl1 

c7 
dlX 

n=t — I  

E 
i n=t — L)k 

dCOL 

dC. 

dl, 

dC7 

n=t — 1 

n=t —1 

E 
,n=t-Ll. 

dCOL 

~dC7~ 
,n = t-L\h <"-°d 

when P,1 = 0 

when capacity is bound 

when demand is bound 

(A.30) 

when COL} = 0 

when unused capacity is bound 

when demand is bound 

(A.31) 

(A.3'2) 

Set 3. Subcontracting Triggering Level Derivatives 

dl t + i  
dZ l  

dP 

dZ l  

dC'OL\ 

dz l  

dl, t + i  
dZ2  

dlt_ <iPt-Llh 
dZ 1  z l  

0. 

0. 

dC'OL l-L. 

n=t — 1 

E 
n=t-L}. 

z1 

s 
" y* ' dCOL'r 

i=t-L' 
JZ> 

IP} 

5ZT' 

1.0 -
dl} 

dZx 

n=t- 1 

E 
='-Llh 

n=t—[ 

E 
K

n=t-Llh 

dCOLx „ \ 

g 
"dZ1" 

(A. 33) 

when P,1 = 0 

when capacity is bound 

when demand is bound 

when COL} = 0 

when unused capacity is bound 

[A.34) 

(A.35) 

when demand is bound 

<1L + 

dZ-

dP,-L.h  ,  ^'01,-t;, 

Z? Z% 
(A.36) 
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dPt 

dZ2  

dCOL] 

dZ2  

0. 

0. 

" i f '  3 0 "  
• n=t~Llh 

Tl = t — 1 
£ dCOL'n 

n=t-L\h 
12̂  

0. 

Kn  = t~Llh 
n=t— I 

L n = / — L1 

jCQL'n 
dZ2 

when P/ = 0 

when capacity is bound 

when demand is bound 

when C'OL\ = 0 

when unused capacity is bound 

when demand is bound 

For period n, the cost function derivatives are 

Set 1. Cost Derivative with Respect to In-House Base-Stock Derivatives 

(A.3-; 

(A.38) 

(A.39) 

dS dS1  

d f l  d l 2  f / P ' r  1  d P f _ .  t  
- . ost dsi 

dCOL\_L\  
+COL\uSt  ——— + COL2  

dCOL2_Li  

dS1  '--"cost ( [Si  (A.40) 

Similar equations can be developed for the derivatives with respect to S2 

Set 2. Cost Derivative with Respect to Production Capacity Derivatives 

dC'ost, , , e//,1 , dlr 
l - { / 1  > 0 }  +  A 2 - ^ T i - l . { / > 0 }  

prod 

dl2  r/P',i <//f ,t  
' ' W-1 - {/ < 0} - rcl.,. _ rcL, -

dl} 

+ i  ^ 1 , , < 0 , + "  ^  prod 
dC 

dCOL2_Li  

dS1  +C0L^< ' f/51  

prod 

A.4L) 
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Set 3. Cost Derivative with Respect to Subcontracting Triggering Level 

rll2 

W . ^ r i . { / < o )  +  ̂ . ^ r  

dZ1  

d P , ,  
t-L 

i • {/ < 0} - rc , l
cost • —jgi - UC: ost 

dZ1  

dC'OL 

dZ1  

dZ1  

( A-4*2 ) 

Inventory Collaboration 

The same equations used for capacity collaboration are used for inventory collaboration 

dCOL1, 
with some modifications. The first modification is to consider = 0.0 and introduce a 

new set of derivatives with respect to Y. The derivative that will play an important role in 

this set is 

dCOL\ 

d\ • 2  

0, 

lY? ~ L0< 

= 

when C'OL\ = 0 

when inventorv available is bound 

n = £— I 
£ 

n=t — I 

,n=t-Llh 

n = t-Llh "" prod 

dCOL 1  

(A.43) 

dC1 
when demand is bound 

(A.44) 

The rest of the set is obtained by implementing this derivative in the inventory and production 

equations. Cost derivatives for all of the decision variables are obtained as before. 
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